The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response
نویسنده
چکیده
Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa pneumonia. The major pathogenic toxins among the exoproducts of P. aeruginosa and the mechanism by which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found to contribute to acute lung injury. P. aeruginosa secretes these toxins through the recently defined type III secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins, and regulatory components. In the P. aeruginosa genome, a pathogenic gene cluster, the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type III secretory toxins, namely ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa. ExoS is a 49-kDa form of exoenzyme S, a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis, the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation. ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named P. aeruginosa pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in P. aeruginosa pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the potential to decrease acute lung injury and improve clinical outcome.
منابع مشابه
Pseudomonas aeruginosa – Pathogenesis and Pathogenic Mechanisms
Pseudomonas aeruginosa is a common bacterium, Gram-negative opportunistic pathogen capable of infecting humans with compromised natural defenses and causing severe pulmonary disease. It is one of the leading pathogen associated with nosocomial infections. It has a vast arsenal of pathogenicity factors that are used to interfere with host defenses. Pathogenesis in P. aeruginosa facilitates adhes...
متن کاملHeat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin-10-dependent mechanism in mice.
BACKGROUND The heat-shock response (HSR) protects from insults, such as ischemia-reperfusion injury, by inhibiting signaling pathways activated by sterile inflammation. However, the mechanisms by which the HSR activation would modulate lung damage and host response to a bacterial lung infection remain unknown. METHODS HSR was activated with whole-body hyperthermia or by intraperitoneal geldan...
متن کاملTracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections
Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence...
متن کاملPseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.
Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic...
متن کاملAnti-Pseudomonas aeruginosa serotype O11 LPS immunoglobulin M monoclonal antibody panobacumab (KBPA101) confers protection in a murine model of acute lung infection.
OBJECTIVES To investigate the in vivo efficacy in a murine pulmonary infection model of panobacumab (KBPA101), a human IgM monoclonal antibody directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11, and to describe the anti-inflammatory effects in the lung as a consequence of the treatment. METHODS We established an experimental murine model of acute pneumonia by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014